How to use DSR routing protocol in ns2


The reactive on demand routing protocols establish the route to a particular destination only if it is needed. Dynamic Source Routing (DSR) is one of the commonly used reactive on demand routing protocols in mobile ad hoc network (MANET). DSR is a loop-free, source based, on-demand routing protocol in which each node maintains a route cache consisting of source routes known by the node. A source node initiates a fresh route discovery process only if it does not already have a valid route to the destination in its route cache. The entries in the route cache are regularly updated as new routes are known. The sample16.tcl shows a node configuration for a wireless mobile node that runs DSR as its adhoc routing protocol. Prior to the establishment of communication between the source and receiver node, the routing protocol should be mentioned to find the route between them. Data Transmission is established between nodes using UDP agent and CBR traffic.

#Filename: sample16.tcl
#***************DSR ROUTING PROTOCOL***************************#
# Simulator Instance Creation
set ns [new Simulator]

#Fixing the co-ordinate of simutaion area
set val(x) 500
set val(y) 500
# Define options
set val(chan) Channel/WirelessChannel ;# channel type
set val(prop) Propagation/TwoRayGround ;# radio-propagation model
set val(netif) Phy/WirelessPhy ;# network interface type
set val(mac) Mac/802_11 ;# MAC type
set val(ifq) CMUPriQueue ;# Interface queue type
set val(ll) LL ;# link layer type
set val(ant) Antenna/OmniAntenna ;# antenna model
set val(ifqlen) 50 ;# max packet in ifq
set val(nn) 10 ;# number of mobilenodes
set val(rp) DSR ;# routing protocol
set val(x) 500 ;# X dimension of topography
set val(y) 500 ;# Y dimension of topography
set val(stop) 10.0 ;# time of simulation end

# set up topography object
set topo [new Topography]
$topo load_flatgrid $val(x) $val(y)

# general operational descriptor- storing the hop details in the network
create-god $val(nn)

# configure the nodes
$ns node-config -adhocRouting $val(rp) \
-llType $val(ll) \
-macType $val(mac) \
-ifqType $val(ifq) \
-ifqLen $val(ifqlen) \
-antType $val(ant) \
-propType $val(prop) \
-phyType $val(netif) \
-channelType $val(chan) \
-topoInstance $topo \
-agentTrace ON \
-routerTrace ON \
-macTrace OFF \
-movementTrace ON

# Node Creation

for {set i 0} {$i < 3} {incr i} {

set node_($i) [$ns node]
$node_($i) color black


for {set i 0} {$i < 3} {incr i} {

$node_($i) set X_ [expr rand()*$val(x)]
$node_($i) set Y_ [expr rand()*$val(y)]
$node_($i) set Z_ 0

Defining Communication between node0 and all nodes ****************************

for {set i 1} {$i < 3} {incr i} {
# Defining a transport agent for sending
set udp [new Agent/UDP]

# Attaching transport agent to sender node
$ns attach-agent $node_($i) $udp

# Defining a transport agent for receiving
set null [new Agent/Null]

# Attaching transport agent to receiver node
$ns attach-agent $node_(0) $null

#Connecting sending and receiving transport agents
$ns connect $udp $null

#Defining Application instance
set cbr [new Application/Traffic/CBR]

# Attaching transport agent to application agent
$cbr attach-agent $udp

#Packet size in bytes and interval in seconds definition
$cbr set packetSize_ 512
$cbr set interval_ 0.1

# data packet generation starting time
$ns at 1.0 "$cbr start"

# data packet generation ending time
#$ns at 6.0 "$cbr stop"