#5, First Floor, 4th Street , Dr. Subbarayan Nagar Kodambakkam, Chennai-600 024 pro@slogix.in

Office Address

  • #5, First Floor, 4th Street Dr. Subbarayan Nagar Kodambakkam, Chennai-600 024 Landmark : Samiyar Madam
  • pro@slogix.in
  • +91- 81240 01111

Social List

How to implement linear regression using Spark with Python
Objective

To implement linear regression using Spark with python

Process

  Set up Spark Context and Spark session

  Load the Data set

  Covert the data to dense vectors(Features and Label)

  Transform the dataset to dataframe

  Identify categorical features, and index them

  Split the data into train and test set

  Fit the linear regression model

  Predict using the test set

  Take the summary of the model and evaluate metrics

Sapmle Code

from pyspark.sql import SparkSession
from pyspark.ml.linalg import Vectors
from pyspark.ml.regression import LinearRegression
from pyspark.ml import Pipeline
from pyspark.ml.feature import VectorIndexer
from pyspark.ml.evaluation import RegressionEvaluator
import sklearn.metrics
#Set up SparkContext and SparkSession
spark=SparkSession \
.builder \
.appName(“Python spark regression example”)\
.config(“spark.some.config.option”,”some-value”)\
.getOrCreate()
#Load the data set
df=spark.read.format(‘com.databricks.spark.csv’).options(header=’True’,inferschema=’True’).load(“/home/…../weight-height.csv”)
#Convert the dataset to dense vector
def transData(data):
return data.rdd.map(lambda r: [Vectors.dense(r[-2]),r[-1]]).toDF([‘features’,’label’])
transformed= transData(df)
featureIndexer = VectorIndexer(inputCol=”features”, \
outputCol=”indexedFeatures”,\
maxCategories=4).fit(transformed)
# Split the data into training and test sets (20% held out for testing)
(trainingData, testData) = transformed.randomSplit([0.8, 0.2])
# Define LinearRegression algorithm
lr = LinearRegression()
pipeline = Pipeline(stages=[featureIndexer,lr])
model = pipeline.fit(trainingData)
lrm = model.stages[-1]
#Print the coefficient and intercept(Summary)
print(“Coefficient : “+str(lrm.coefficients))
print(“Intercept : “+str(lrm.intercept))
#To predict the data
pred=model.transform(testData)
pred.select(“features”,”label”,”prediction”).show(5)
#Evaluate the RMSE and required the metrics
evaluator=RegressionEvaluator(labelCol=”label”,predictionCol=”prediction”,metricName=”rmse”)
rmse=evaluator.evaluate(pred)
print(“The RMSE value is : “,rmse)
y_true = pred.select(“label”).toPandas()
y_pred = pred.select(“prediction”).toPandas()
r2_score = sklearn.metrics.r2_score(y_true, y_pred)
print(“R^2 score: {0}”.format(r2_score))

Screenshots