Amazing technological breakthrough possible @S-Logix pro@slogix.in

Office Address

  • #5, First Floor, 4th Street Dr. Subbarayan Nagar Kodambakkam, Chennai-600 024 Landmark : Samiyar Madam
  • pro@slogix.in
  • +91- 81240 01111

Social List

How to choose the Best fit Classification Model for our data set in R?

Description

To choose the best fit Classification Model for the given data set using R.

Process

Data set :

  • BreastCancer – Downloaded Data set

Steps:

  • Loading required packages
  • Import data
  • Data Preparation – Resolving Missing values
  • Descriptive Statistics
  • Univariate Plotting – Pie Chart, Box Plot
  • Bivariate plotting – Correlogram
  • Drop the highly Correlated Independent variables
  • Splitting into train and test data
  • Applying ML algorithms – Logistic Regression, Random Forest Random Forest with PCA,KNN, SVM
  • Compute Confusion Matrix for each Model
  • Validation using Metrics – Accuracy, Sensitivity, Precision, Recall, F1 score
Sapmle Code

#Import Data

my_input<-read.csv(“data.csv”)

View(my_input)

str(my_input)

#Data Preparation

#Number of Missing Values

sum(is.na(my_input))

#List of rows having Missing Values

my_input[!complete.cases(my_input),]

#Dropping Missing Value variable and id

my_input<-my_input[,c(-1,-33)]

#Checking for Missing Values

sapply(my_input, function(x)sum(is.na(x)))

#Descriptive Statictics

summary(my_input)

#Univariate Plotting

#Pie Chart

tab<-table(my_input$diagnosis)

colors<-terrain.colors(2)

p_tab<-round(prop.table(tab)*100, digits = 2)

prop_tab<-as.data.frame(p_tab)

p_tab

lab<-sprintf(“%s – %3.1f%s”,prop_tab[,1],p_tab,”%”)

pie(p_tab,col =colors,labels = lab, clockwise = T, border = “gainsboro”,

radius = 1,cex=1.5,main = “Pie Chart of Frequency of Cancer Diagnosis”)

legend(“topright”,legend = prop_tab[,1],fill=colors,cex=1)

#Box Plot

colnames(my_input)

my_mean<-my_input[,c(1:11)];

my_se<-my_input[,c(1, 12:21)];

my_worst<-my_input[,c(1, 22:31)]

library(“ggplot2”)

library(“reshape2″)

ggplot(melt(my_mean,id.vars=”diagnosis”)) + geom_boxplot(aes(variable,value,color =factor(diagnosis))) +

facet_wrap(~variable, scales =’free’)

ggplot(melt(my_se,id.vars=”diagnosis”)) + geom_boxplot(aes(variable,value,color =factor(diagnosis))) +

facet_wrap(~variable, scales =’free’)

ggplot(melt(my_worst,id.vars=”diagnosis”)) + geom_boxplot(aes(variable,value,color =factor(diagnosis))) +

facet_wrap(~variable, scales =’free’)

#Bivariate Analysis

#install.packages(“corrplot”)

library(“corrplot”)

cor_val<-cor(my_input[,2:31])

corrplot(cor_val,order = “hclust”,tl.cex=0.7,main=”Correlation in Independent Variables”)

#Variables with High Correlation

#install.packages(“caret”)

library(“caret”)

high_cor<-colnames(my_input)[findCorrelation(cor_val, cutoff=0.9)]

print(high_cor)

#Removing the highly correlated independent variables

my_input1<-my_input[,which(!colnames(my_input) %in% high_cor)]

ncol(my_input1)

#Splitting into train and test

levels(my_input$diagnosis)

input<-cbind(diagnosis=my_input$diagnosis,my_input1)

View(input)

table(input$diagnosis)

training<-createDataPartition(input$diagnosis,p=0.7,list=F)

train = input[training,]

test = input[-training,]

nrow(train)

nrow(test)

#ML Algorithms

#Setting levels for both train and test data set

levels(train$diagnosis)<-make.names(levels(factor(train$diagnosis)))

levels(test$diagnosis)<-make.names(levels(factor(test$diagnosis)))

fit<-trainControl(method=”cv”,

number = 5,

preProcOptions = list(thresh = 0.99),

classProbs = TRUE,

summaryFunction = twoClassSummary)

#Logistic Regression

log_data<-glm(diagnosis~.,data=train,family = “binomial”)

summary(log_data)

log_data_train<-train(diagnosis~., data=train, method=”glm”,family=binomial(),

trControl=fit )

#ROC curve

#install.packages(“ROCR”)

library(“ROCR”)

pred<-prediction(predict(log_data,test),test$diagnosis)

per<-performance(pred,”tpr”,”fpr”)

plot(per,col=”red”,main=”ROC Curve for Logit Model”)

#Prediction

predict_log<-round(predict(log_data,test,type = “response”),digits = 0)

predict_log<-as.factor(predict_log)

library(“caret”)

levels(predict_log)

levels(test$diagnosis)<-0:1

confusion_log<-confusionMatrix(test$diagnosis,predict_log)

confusion_log

#Random Forest

#install.packages(“randomForest”)

library(“randomForest”)

ran_data trControl=fit )

ran_data

predict_ran<-predict(ran_data,test)

levels(predict_ran)<-0:1

table(predict_ran,test$diagnosis)

mean(predict_ran == test$diagnosis)

#Feature Importance Plot

plot(varImp(ran_data),top=10,main=”Random Forest”)

#Confusion Matrix

confusion_ran<-confusionMatrix(predict_ran,test$diagnosis)

confusion_ran

#Random Forest with PCA

ran_pca<-train(diagnosis~.,

data = train,

metric=”ROC”,

preProcess = c(‘center’, ‘scale’, ‘pca’),

trControl=fit)

#Prediction

predict_ran_pca<-predict(ran_pca, test)

levels(predict_ran_pca)<-0:1

#Confusion Matrix

confusion_ran_pca<-confusionMatrix(predict_ran_pca, test$diagnosis)

confusion_ran_pca

#KNN

# Setting up train controls

library(“caret”)

knn_data<-train(diagnosis~. , data = train, method = “knn”,

preProcess = c(“center”,”scale”),

trControl = fit,

metric = “ROC”)

knn_data

plot(knn_data)

#Prediction

predict_knn<-predict(knn_data,test)

levels(predict_knn)<-0:1

#Confusion Matrix

confusion_knn<-confusionMatrix(predict_knn,test$diagnosis)

confusion_knn

#SVM

library(“e1071″)

svm_data<-train(diagnosis~., data=train, method=”svmRadial”, metric=”ROC”, preProcess=c(‘center’,’scale’),

trace=F,trControl=fit )

svm_data

#Prediction

predict_svm<-predict(svm_data,test)

levels(predict_svm)

#Confusion Matrix

confusion_svm<-confusionMatrix(predict_svm,test$diagnosis)

confusion_svm

#Models Evaluation

model_list<-list(Logistic=log_data_train,Random_Forest=ran_data ,Random_Forest_PCA=ran_pca ,KNN=knn_data,SVM=svm_data)

re

bwplot(re,metric = “ROC”)

confusion<-list(Logistic=confusion_log,Random_Forest=confusion_ran,Random_Forest_PCA=confusion_ran_pca,KNN=confusion_knn,SVM=confusion_svm)

res<-sapply(confusion, function(x) x$byClass)

round(res,digits = 2)

Screenshots
List of rows having Missing Values
choose the Best fit Classification Model for our data set in R
Data Preparation
Loading required packages<
Compute Confusion Matrix for each Model
Accuracy, Sensitivity, Precision, Recall, F1 score
Drop the highly Correlated Independent variables
choose the Best fit Classification Model for our data set in R
BreastCancer
Downloaded Data set
Loading required packages
Import data
Data preparation
Descriptive Statistics
Univariate Plotting
Drop the highly Correlated Independent variables
Splitting into train and test data
Setting levels for both train and test data set
Logistic Regression, Random Forest Random Forest with PCA,KNN, SVM
Applying ML algorithms