• #5, First Floor, 4th Street Dr. Subbarayan Nagar Kodambakkam, Chennai-600 024 Landmark : Samiyar Madam
• pro@slogix.in
• +91- 81240 01111

## How to implement Simple Linear Regression model using R?

###### Description

To implement the simple linear regression model in R programming.

#### Range or variation :

Step 1 : Import the data

Step 2 : Check Correlation between the variables

Step 3 : Create a relationship model using lm() function in R

Step 4 : Summary of the linear model using summary() function

Step 5: Check normality of the residuals.

Step 6 : Predicting the dependent variable using predict() function.

Step 7 : Visualizing the regression graphically.

###### Sapmle Code

#Simple Linear Regression Model

#install caret package
#install.packages(“caret”)
library(“caret”)

#Get and Set Working Directory
print(getwd())
setwd(“/home/soft13”)
getwd()

#Read file from Excel
#install.packages(“xlsx”)
library(“xlsx”)
print(data)
View(data)

#Test Correlation
cor.test(data\$speed,data\$dist,method=”pearson”)

#Simple Linear Regression
linear_model<-lm(dist ~ speed,data=cars)
print(linear_model)
summary(linear_model)

#Check Normality
#Histogram Test for Normality
hist(linear_model\$residuals,col=564)

#Anderson – Darling test for Normality
#install.packages(“nortest”)
library(“nortest”)

#Shapiro-Wilk test for Normality
shapiro.test(linear_model\$residuals)

#Q-Q plot
plot(qqnorm(linear_model\$residuals))

#Generating a line for Q-Q plot
qqline (linear_model\$residuals, col=2)

#Density plot
plot(density(linear_model\$residuals))
polygon(density(linear_model\$residuals),col=”red”)

#Predicting the dependent variable
find<-data.frame(speed=30)
predict(linear_model,find)

#Visualize the regression graphically
plot(data\$dist,data\$speed,xlab=”Distance”,ylab=”Speed”,main=”Distance and Speed Regression”,col=”red”)
abline(linear_model)

#ANOVA
anova(linear_model)