Amazing technological breakthrough possible @S-Logix pro@slogix.in

Office Address

  • #5, First Floor, 4th Street Dr. Subbarayan Nagar Kodambakkam, Chennai-600 024 Landmark : Samiyar Madam
  • pro@slogix.in
  • +91- 81240 01111

Social List

FCHL revisited: Faster and more accurate quantum machine learning - 2020

Fchl Revisited: Faster And More Accurate Quantum Machine Learning

Research Area:  Machine Learning

Abstract:

We introduce the FCHL19 representation for atomic environments in molecules or condensed-phase systems. Machine learning models based on FCHL19 are able to yield predictions of atomic forces and energies of query compounds with chemical accuracy on the scale of milliseconds. FCHL19 is a revision of our previous work [F. A. Faber et al., J. Chem. Phys. 148, 241717 (2018)] where the representation is discretized and the individual features are rigorously optimized using Monte Carlo optimization. Combined with a Gaussian kernel function that incorporates elemental screening, chemical accuracy is reached for energy learning on the QM7b and QM9 datasets after training for minutes and hours, respectively. The model also shows good performance for non-bonded interactions in the condensed phase for a set of water clusters with a mean absolute error (MAE) binding energy error of less than 0.1 kcal/mol/molecule after training on 3200 samples. For force learning on the MD17 dataset, our optimized model similarly displays state-of-the-art accuracy with a regressor based on Gaussian process regression. When the revised FCHL19 representation is combined with the operator quantum machine learning regressor, forces and energies can be predicted in only a few milliseconds per atom. The model presented herein is fast and lightweight enough for use in general chemistry problems as well as molecular dynamics simulations.

Keywords:  

Author(s) Name:  Anders S. Christensen, Lars A. Bratholm, Felix A. Faber, and O. Anatole von Lilienfeld

Journal name:  The Journal of Chemical Physics

Conferrence name:  

Publisher name:  AIP

DOI:  https://doi.org/10.1063/1.5126701

Volume Information:  Volume 152, Issue 4