Amazing technological breakthrough possible @S-Logix pro@slogix.in

Office Address

  • #5, First Floor, 4th Street Dr. Subbarayan Nagar Kodambakkam, Chennai-600 024 Landmark : Samiyar Madam
  • pro@slogix.in
  • +91- 81240 01111

Social List

OCSO: Off-the-cloud service optimization for green efficient service resource utilization - 2014

OCSO: Off-the-cloud service optimization for green efficient service resource utilization

Research Area:  Cloud Computing

Abstract:

Many efforts have been made in optimizing cloud service resource management for efficient service provision and delivery, yet little research addresses how to consume the provisioned service resources efficiently. Meanwhile, typical existing resource scaling management approaches often rest on single monitor category statistics and are driven by certain threshold algorithms, they usually fail to function effectively in case of dealing with complicated and unpredictable workload patterns. Fundamentally, this is due to the inflexibility of using static monitor, threshold and scaling parameters. This paper presents Off-the-Cloud Service Optimization (OCSO), a novel user-side optimization solution which specifically deals with service resource consumption efficiency from the service consumer perspective. OCSO rests on an intelligent resource scaling algorithm which relies on multiple service monitor metrics plus dynamic threshold and scaling parameters. It can achieve proactive and continuous service optimizations for both real-world IaaS and PaaS services, through OCSO cloud service API. From the two series of experiments conducted over Amazon EC2 and ElasticBeanstalk using OCSO prototype, it is demonstrated that the proposed approach can make significant improvement over Amazon native automated service provision and scaling options, regardless of scaling up/down or in/out.

Keywords:  

Author(s) Name:  Daren Fang, Xiaodong Liu, Lin Liu & Hongji Yang

Journal name:  Journal of Cloud Computing

Conferrence name:  

Publisher name:  Springer

DOI:  10.1186/s13677-014-0009-1

Volume Information:  volume 3, Article number: 9 (2014)