Condition for Implementing Binomial Distribution in a Dataset Using Python
Description:
The binomial distribution is a discrete probability distribution that models the number of successes in a fixed number of independent Bernoulli trials, each with the same probability of success. It is defined by two parameters:
n: The number of trials.
p: The probability of success in each trial.
Step-by-Step Process
Import Required Libraries:
Use `scipy.stats` for generating and analyzing the binomial distribution.
Define the Parameters:
Set `n` (number of trials) and `p` (probability of success).
Generate Data:
Use the `binom.pmf`, `binom.cdf`, or random sampling functions.
Visualize the Distribution:
Use `matplotlib` for plotting.
Sample Source Code
import matplotlib.pyplot as plt
from scipy.stats import binom
# Parameters
n = 10 # Number of trials
p = 0.5 # Probability of success
# Values from 0 to n
x = range(0, n + 1)
# Binomial PMF for each number of successes
pmf = binom.pmf(x, n, p)
plt.bar(x, pmf, color='blue', alpha=0.7)
plt.title('Binomial Distribution')
plt.xlabel('Number of Successes')
plt.ylabel('Probability')
plt.show()