Amazing technological breakthrough possible @S-Logix pro@slogix.in

Office Address

  • #5, First Floor, 4th Street Dr. Subbarayan Nagar Kodambakkam, Chennai-600 024 Landmark : Samiyar Madam
  • pro@slogix.in
  • +91- 81240 01111

Social List

Integrating Spatial Gene Expression and Breast Tumour Morphology via Deep Learning - 2020

integrating-spatial-gene-expression-and-breast-tumour-morphology-via-deep-learning.jpg

Integrating Spatial Gene Expression and Breast Tumour Morphology via Deep Learning | S-Logix

Research Area:  Machine Learning

Abstract:

Spatial transcriptomics allows for the measurement of RNA abundance at a high spatial resolution, making it possible to systematically link the morphology of cellular neighbourhoods and spatially localized gene expression. Here, we report the development of a deep learning algorithm for the prediction of local gene expression from haematoxylin-and-eosin-stained histopathology images using a new dataset of 30,612 spatially resolved gene expression data matched to histopathology images from 23 patients with breast cancer. We identified over 100 genes, including known breast cancer biomarkers of intratumoral heterogeneity and the co-localization of tumour growth and immune activation, the expression of which can be predicted from the histopathology images at a resolution of 100 µm. We also show that the algorithm generalizes well to The Cancer Genome Atlas and to other breast cancer gene expression datasets without the need for re-training. Predicting the spatially resolved transcriptome of a tissue directly from tissue images may enable image-based screening for molecular biomarkers with spatial variation.

Keywords:  
Biotechnology
Computational biology
Bioinformatics

Author(s) Name:  Bryan He, Ludvig Bergenstråhle, Linnea Stenbeck, Abubakar Abid, Alma Andersson, Åke Borg, Jonas Maaskola

Journal name:  Nature Biomedical Engineering

Conferrence name:  

Publisher name:  Springer

DOI:  10.1038/s41551-020-0578-x

Volume Information:  4, pages 827–834 (2020)