Research Area:  Mobile Ad Hoc Networks
In the first part of this thesis, we tackle the initialization of the network in this hierarchical context. We propose a statistical model enabling a network designer to perceive the requirements in terms of equipments, channel bandwidth, antenna configurations, antenna radiation pattern, achievable data rates for instance. In order to guarantee fully connected MANET, we introduce an analytical tool to estimate the required inter-staff-ships and inter-shipmasters coverage radii. Then we study the multi-hop end-to-end communications and we propose several routing protocols to enhance the delays. Afterwards, we focus on the contribution of the satellite backhaul with a comparative study qualifying the needs in Hybrid Stations “HSs” and a strategy to access to these gateways.
In a second part, we emphasis on the radio resource outage occurrence and the dimensioning matter to optimize the allocated bandwidth to the network. We investigate stochastic geometry tools to provide an analytical model enabling to foresee the amount of required radio resources by the active nodes with a certain Quality of Service “QoS” and several Multiple Inputs Multiple Outputs “MIMO” antenna configurations in the maritime context. We consider first the centralized access scheme where all communications are performed via the shipmasters that are in charge of the radio resource management. Then we focus on the distributed access scheme with Aloha Medium Access Control “MAC” protocol where nodes are authorized to access to the shared bandwidth arbitrarily and unilaterally. Simulation and numerical results are provided to evaluate the performances in terms of required bandwidth, aggregate capacity.
Name of the Researcher:  Achraf Kessab
Name of the Supervisor(s):  Emmanuelle Vivier
Year of Completion:  2018
University:  TeleCom Paris Technology
Thesis Link:   Home Page Url