To resolve the missing values using R programming.
In statistics, missing data, or missing values,occur when no data value is storedfor the variable in an observation.
Missing data are a common occurrenceand can have a significant effecton the conclusionsthat can be drawnfrom the data.
Package and Function:
R Package : mice
To view the missing value in tabularform
To impute the missing values withmean/median/mode
R Function :na(x)-- To check whether there is any missingvalues in the given data frame ormatrix
R Function : sum(x)-- To find the number of missing values
R Function : cases(x)--To print a logical vector thatindicates complete and missing rows(i.e. rows without NA).
R Function : omit(x)-- To remove the columns having missingvalues
R Function : pattern(x)-- This function from MICE packageused to view the tabular form of missingValues
X -- Data Frame or Matrix
#Weibull Distribution
#dweibull
x<-seq(0,100,by=1)
y<-dweibull(x,shape = 3,scale=8)
plot(x,y,main=”dweibull plot”,col=”blue”)
#pweibull
y<-pweibull(x,shape=3,scale=10)
plot(x,y,main=”pweibull”,col=”red”)
#qweibull
y<-qweibull(p=0.4,shape = 2,scale = 2)
print(y)
#rweibull
x<-rweibull(n =20,shape = 4,scale = 4)
hist(x,col=275)