Research Breakthrough Possible @S-Logix pro@slogix.in

Office Address

Social List

How to Impute Missing Values and Encode Target Variables Using Sklearn in Python

Imputation and Encoding Process

Condition for Imputing Missing Values and Encoding Target Variables

  • Description:
    Imputation: Refers to the process of filling in missing values in a dataset. It is essential because machine learning models often require complete datasets without missing values.

    Encoding: Refers to converting categorical variables into numerical representations because most machine learning models work with numeric data. This is done using Label Encoding or One-Hot Encoding.
Step-by-Step Process
  • Imputing Missing Values:
    Use SimpleImputer from sklearn.impute to handle missing values. Common strategies for imputation include mean, median, or most_frequent.
  • Encoding Target Variables:
    Label Encoding: Converts categories into numerical values (0, 1, 2...).
    One-Hot Encoding: Creates binary columns for each category in the target variable.
Sample Source Code
  • # Code for Imputing Missing Values and Encoding Target Variables

    import pandas as pd

    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import LabelEncoder
    from sklearn.model_selection import train_test_split

    data = {
    'Age': [25, 30, 35, None, 40],
    'Salary': [50000, None, 70000, 80000, None],
    'Department': ['HR', 'IT', 'Finance', 'Marketing', 'HR'],
    'Target': ['Yes', 'No', 'Yes', 'No', 'Yes']
    }

    df = pd.DataFrame(data)

    print("Original Data:")
    print(df)

    # Impute missing values (Age and Salary columns)
    imputer = SimpleImputer(strategy='mean')
    df[['Age', 'Salary']] = imputer.fit_transform(df[['Age', 'Salary']])

    # Display the DataFrame after imputation
    print("\nData after Imputation:")
    print(df)

    # Encode the target variable ('Target' column) using Label Encoding
    label_encoder = LabelEncoder()
    df['Target'] = label_encoder.fit_transform(df['Target'])

    # Display the DataFrame after encoding the target variable
    print("\nData after Target Encoding:")
    print(df)

    # Splitting Data into Train and Test sets
    X = df[['Age', 'Salary', 'Department']]
    y = df['Target']

    # Splitting the data
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

    print("\nTraining Data:")
    print(X_train)

    print("\nTesting Data:")
    print(X_test)
Screenshots
  • Imputation and Encoding Output