Research Breakthrough Possible @S-Logix pro@slogix.in

Office Address

Social List

How to Locate Rows and Columns Using loc, iloc in Python

Locate Rows and Columns Using loc, iloc

Condition for Using loc and iloc in Python

  • Description:
    In Pandas, loc and iloc are used to locate or select rows and columns in a DataFrame.

    These functions are widely used for indexing and retrieving data based on either labels (loc) or integer positions (iloc).

    loc: Used for label-based indexing. You can select rows and columns by their labels (index names or column names).
    iloc: Used for integer-based indexing. You select rows and columns by their positions (integer indices).

Step-by-Step Process
  • Import Pandas:
    Import the Pandas library with import pandas as pd.
  • Create or Load a DataFrame:
    Create a DataFrame manually or load it from a file.
  • Using loc:
    Use df.loc[row_label, column_label] to access a specific cell or slice rows/columns by label.
  • Using iloc:
    Use df.iloc[row_position, col_position] to access specific rows and columns using integer positions.
Sample Source Code
  • # Code for Locating Rows and Columns Using loc and iloc

    import pandas as pd

    data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
    'Age': [25, 30, 35, 40, 45],
    'Salary': [50000, 60000, 70000, 80000, 90000]
    }
    df = pd.DataFrame(data)

    print("Original DataFrame:")
    print(df)

    # Using loc (Label-based indexing)

    # Access the row where Name is 'Alice'
    print("\nUsing loc to access the row where Name is 'Alice':")
    print(df.loc[df['Name'] == 'Alice'])

    # Access specific row and column (row label = 2, column label = 'Age')
    print("\nUsing loc to access specific row and column (index 2, 'Age'):")
    print(df.loc[2, 'Age'])

    # Select a range of rows (from index 1 to 3) and columns (from 'Name' to 'Salary')
    print("\nUsing loc to select a range of rows and columns:")
    print(df.loc[1:3, 'Name':'Salary'])

    # Using iloc (Integer-based indexing)

    # Access the row at position 1 (second row)
    print("\nUsing iloc to access the row at position 1:")
    print(df.iloc[1])

    # Access the element at row position 2 and column position 1 ('Age' is the second column)
    print("\nUsing iloc to access the element at row position 2 and column position 1:")
    print(df.iloc[2, 1])

    # Select a range of rows (from position 0 to 3) and columns (from position 0 to 2)
    print("\nUsing iloc to select a range of rows and columns:")
    print(df.iloc[0:3, 0:2])
Screenshots
  • Locate Rows and Columns Using loc, iloc