Amazing technological breakthrough possible @S-Logix pro@slogix.in

Office Address

  • #5, First Floor, 4th Street Dr. Subbarayan Nagar Kodambakkam, Chennai-600 024 Landmark : Samiyar Madam
  • pro@slogix.in
  • +91- 81240 01111

Social List

Contributions to Attribute-Based Encryption and Its Variants

Research Area:  Fog Computing

Abstract:

   This thesis starts from the study of efficiency and expressiveness of attribute-based encryption. The feature of flexibility of attribute-based encryption causes additional computational overheads in encryption and decryption and increases the length of ciphertexts and private keys. The dilemma between efficiency and expressiveness of attribute-based encryption encourages novel techniques in ABE scheme construction. A new ciphertext-policy attribute-based encryption (CP-ABE) scheme supporting access policies of an AND-gate and a threshold with short ciphertexts is proposed. Such a scheme offers succinct ciphertexts with further expressiveness and allows encryptors to assign attributes into types of mandatory and optional when designing an access policy.
   The thesis then investigates a new challenge of access policy update in ABE systems. The access policies in private keys or ciphertexts in ABE systems cannot be changed; however, the ability of modifying existing policies is highly desired for real-world applications. Schemes with efficient attribute addition and revocation mechanism are proposed. Such schemes allow encryptors to add (or revoke) attributes to (or from) access policies of existing ciphertexts via a proxy server and remain the ciphertexts sent to users with constant size.
   The thesis further conducts research into real-world scenarios. The scenario of Fog Computing is first considered and a traceable CP-ABE scheme with key-delegation abuse resistance is proposed to solve private key delegation and key duplication problem. The second considered scenario is the problem of preserving certain attributes when applying the proposed access policy update mechanism. We propose two innovative CP-ABE schemes and their variants for scenarios in Fog Computing and access policy update with attribute preservation.

Name of the Researcher:  Yinhao Jiang

Name of the Supervisor(s):  Willy Susilo

Year of Completion:  2018

University:  The University of Wollongong

Thesis Link:   Home Page Url