Amazing technological breakthrough possible @S-Logix pro@slogix.in

Office Address

  • #5, First Floor, 4th Street Dr. Subbarayan Nagar Kodambakkam, Chennai-600 024 Landmark : Samiyar Madam
  • pro@slogix.in
  • +91- 81240 01111

Social List

A novel fusion-based deep learning model for sentiment analysis of COVID19 tweets - 2021

Research Area:  Machine Learning

Abstract:

Undoubtedly, coronavirus (COVID-19) has caused one of the biggest challenges of all times. The ongoing COVID-19 pandemic has caused more than 150 million infected cases and one million deaths globally as of May 5, 2021. Understanding the sentiment of people expressed in their social media comments can help in monitoring, controlling, and ultimately eradicating the disease. This is a sensitive matter as the threat of infectious disease significantly affects the way people think and behave in various ways. In this study, we proposed a novel method based on the fusion of four deep learning and one classical supervised machine learning model for sentiment analysis of coronavirus-related tweets from eight countries. Also, we analyzed coronavirus-related searches using Google Trends to better understand the change in the sentiment pattern at different times and places. Our findings reveal that the coronavirus attracted the attention of people from different countries at different times in varying intensities. Also, the sentiment in their tweets is correlated to the news and events that occurred in their countries including the number of newly infected cases, number of recoveries and deaths. Moreover, common sentiment patterns can be observed in various countries during the spread of the virus. We believe that different social media platforms have great impact on raising people’s awareness about the importance of this disease as well as promoting preventive measures among people in the community.

Author(s) Name:  Mohammad Ehsan Basiri,Shahla Nemati,Moloud Abdar,Somayeh Asadi,U. Rajendra Acharrya

Journal name:  Knowledge-Based Systems

Conferrence name:  

Publisher name:  Elsevier

DOI:  10.1016/j.knosys.2021.107242

Volume Information:  Volume 228, 27 September 2021, 107242