Research breakthrough possible @S-Logix pro@slogix.in

Office Address

  • 2nd Floor, #7a, High School Road, Secretariat Colony Ambattur, Chennai-600053 (Landmark: SRM School) Tamil Nadu, India
  • pro@slogix.in
  • +91- 81240 01111

Social List

How to implement multiple linear regression using sklearn library in python?

Description

To implement multiple linear regression using sklearn library in python.

Process

  Import necessary libraries.

  Import LinearRegression()from sklearn.

  Plot scatter diagram to check linearity.

  Assign independent variables(X).

  Assign dependent variable(Y).

  Build the regression model.

  Fit X and Y.

Sample Code

#import libraries

from sklearn import linear_model

import pandas as pd

import matplotlib.pyplot as plt

#read the data set

data=pd.read_csv(‘/home/soft27/soft27

/Sathish/Pythonfiles/Employee.csv’)

#creating data frame

df=pd.DataFrame(data)

print(df)

#plotting the scatter diagram for independent variable 1

plt.scatter(df[‘rating’], df[‘salary’], color=’red’)

plt.title(‘rating vs salary’, fontsize=14)

plt.xlabel(‘rating’, fontsize=14)

plt.ylabel(‘salary’, fontsize=14)

plt.grid(True)

plt.show()

#plotting the scatter diagram for independent variable 2

plt.scatter(df[‘bonus’], df[‘salary’], color=’green’)

plt.title(‘bonus vs salary’, fontsize=14)

plt.xlabel(‘bonus’, fontsize=14)

plt.ylabel(‘salary’, fontsize=14)

plt.grid(True)

plt.show()

#assigning the independent variable

X = df[[‘rating’,’bonus’]]

#assigning the dependent variable

Y = df[‘salary’]

#Build multiple linear regression

regr = linear_model.LinearRegression()

#fit the variables in to the linear model

regr.fit(X, Y)

#print the intercept and regression co-efficient

print(‘Intercept: \n’, regr.intercept_)

print(‘Coefficients: \n’, regr.coef_)

Screenshots
implement multiple linear regression using sklearn library in python
import matplotlib.pyplot as plt
read the dataset
split the data frame into the train and frame