Research breakthrough possible @S-Logix

Office Address

  • 2nd Floor, #7a, High School Road, Secretariat Colony Ambattur, Chennai-600053 (Landmark: SRM School) Tamil Nadu, India
  • +91- 81240 01111

Social List

Time series analysis using python?


To analyse the furniture sales data in superstore sales data set in python.

  • Import necessary libraries.
  • Read the data set.
  • Take necessary columns from the data set.
  • Drop
  • all other columns.
  • Make data column as index.
  • Select the predictor variable as per the requirements.
  • Check the time series stationarity.
  • Check, is the time series having trend and seasonality.
  • Calculate rolling mean and rolling standard deviation.
  • If there is trend and seasonality in the time series, eliminate those things.
  • Take test statistics value and critical values using Dickey-Fuller test.
  • If test statistics value is greater than critical value then the time series is not stationarity.
  • Make again time series as stationarity until the statistics value is less than critical value.
  • Plot the time series.
  • Plot the rolling mean and rolling standard deviation.
  • Plot the residual,trend,observations and seasonality.
  • Find optimal number of parameters(p,d,q) using less AIC value combination.
  • Fit the ARIMA model.
  • Take the summary of the model.
  • Validate the model.
  • Do forecast for the model.
Sample Code

#import libraries

import warnings

import itertools

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline


import pandas as pd

import statsmodels.api as sm

import matplotlib

from statsmodels.tsa.stattools import adfuller

#Reading the data

data = pd.read_excel(“/home/soft23/soft23

furniture = data.loc[data[‘Category’] == ‘Furniture’]

#unwanted columns

cols = [‘Row ID’, ‘Order ID’, ‘Ship Date’, ‘Ship Mode’, ‘Customer ID’, ‘Customer Name’, ‘Segment’,

‘Country’, ‘City’, ‘State’, ‘Postal Code’, ‘Region’, ‘Product ID’, ‘Category’, ‘Sub-Category’,

‘Product Name’, ‘Quantity’, ‘Discount’, ‘Profit’]

furniture.drop(cols, axis=1, inplace=True)

furniture = furniture.sort_values(‘Order Date’)

df = pd.DataFrame(furniture)

df = furniture.set_index(‘Order Date’)

print(“Index of the data frame\n\n”,df.index)

ts = df[‘Sales’].resample(‘MS’).mean()


print(“Actual Time series is\n\n”,ts)


#total length of time series

print(“Length of time series in months:”,len(ts))


#First 5 rows of time series

print(“head of the time series:\n\n”,ts.head())


#check stationarity

print(“Sales of furniture over the years\n\n”)

ts.plot(figsize=(20,10), linewidth=3, fontsize=20)

plt.xlabel(‘Order Date’,fontsize=20)

print(“Rolling mean and standard deviation of time series\n\n”)

def test_stationarity(timeseries):

#Determing rolling statistics

rolmean = timeseries.rolling(window=12).mean()

rolstd = timeseries.rolling(window=12).std()

#Plot rolling statistics

timeseries.plot(figsize=(20,10), linewidth=3, fontsize=20)

plt.xlabel(‘Order Date’,fontsize=20)

rolmean.plot(figsize=(20,10), linewidth=3, fontsize=20)

plt.xlabel(‘Order Date’,fontsize=20)

rolstd.plot(figsize=(20,10), linewidth=3, fontsize=20)

plt.xlabel(‘Order Date’,fontsize=20)

plt.title(‘Rolling Mean & Standard Deviation’)

#Perform Dickey-Fuller test

print (‘Results of Dickey-Fuller Test\n’)

dftest = adfuller(timeseries, autolag=’AIC’)

dfoutput = pd.Series(dftest[0:4], index=[‘Test Statistic’,’p-value’,’#Lags Used’,’Number of bservations Used’])

for key,value in dftest[4].items():

dfoutput[‘Critical Value (%s)’%key] = value



from pylab import rcParams

rcParams[‘figure.figsize’] = 18, 8

decomposition = sm.tsa.seasonal_decompose(ts, model=’additive’)

fig = decomposition.plot()

#Find minimum AIC value

print(“Finding optimal set of parameters\n”)

p = d = q = range(0, 2)

pdq = list(itertools.product(p, d, q))

seasonal_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, d, q))]

for param in pdq:

for param_seasonal in seasonal_pdq:


mod = sm.tsa.statespace.SARIMAX(ts,order


results =

print(‘ARIMA{}x{}12 – AIC:{}’.format(param, param_seasonal, results.aic))



#Fit ARIMA model


mod = sm.tsa.statespace.SARIMAX(ts,order=(1, 1, 1),seasonal_order=(1, 1, 0, 12),enforce_stationarity=False,


results =


pred = results.get_prediction(start=pd.to_datetime
(‘2017-01-01’), dynamic=False)

pred_ci = pred.conf_int()

ax = ts[‘2014′:].plot(label=’observed’)

pred.predicted_mean.plot(ax=ax, label=’One-step ahead Forecast’, alpha=.7, figsize=(14, 7))

ax.fill_between(pred_ci.index,pred_ci.iloc[:, 0],pred_ci.iloc[:, 1], color=’k’, alpha=.2)


ax.set_ylabel(‘Furniture Sales’)


Time series analysis using python
import libraries
Time series analysis using python
Reading datasets
Unwanted columns
Plot the rolling mean and rolling standard deviation
Plot the residual,trend,observations and seasonality
Validate the model
Take necessary columns from the data set
total length of time series
Length of time series in months
Time series analysis