Amazing technological breakthrough possible @S-Logix

Office Address

  • #5, First Floor, 4th Street Dr. Subbarayan Nagar Kodambakkam, Chennai-600 024 Landmark : Samiyar Madam
  • +91- 81240 01111

Social List

Design and Optimization of access Control Protocols in Vehicular Ad Hoc Networks

Research Area:  Vehicular Ad Hoc Networks


   Road crashes and their damages represent a serious issue and are one of the main causes of people death. In this context, Vehicular Ad hoc NETworks (VANETs) are deployed to reduce the risk of road accident as well as to improve passengers’ comfort by allowing vehicles to exchange different kinds of data which ranges widely from road safety and traffic management to infotainment. Nowadays, safety applications are receiving a great deal of attention from researchers as well as from automobile manufacturers. In this thesis, we particularly focus on safety-critical applications, designed to provide drivers assistance in dangerous situations and to avoid accidents in highway environments.
   we propose TRPM, a TDMA aware Routing Protocol for Multi-hop communication. Our routing scheme is based on a cross layer approach between the MAC and the routing layers, in which the intermediate vehicles are selected using TDMA scheduling information. Simulation results show that TRPM provides better performances in terms of average end-to-end delay, average number of hops and average delivery ratio. In the second part, we focus on coordinator-based TDMA scheduling mechanisms. First, we propose the Centralized TDMA based MAC protocol (CTMAC) which uses Road Side Units (RSUs) as a central coordinator to create and maintain the TDMA schedules.
   To this end, first we propose an adaptive weighted clustering protocol, named AWCP, which is road map dependent and uses road IDs and vehicle directions to make the clusters’ structure as stable as possible. Then, we formulate the AWCP parameter tuning as a multi-objective problem and we propose an optimization tool to find the optimal parameters of AWCP to ensure its QoS. Next, we propose ASAS, an adaptive slot assignment strategy for a cluster-based TDMA MAC protocol. This strategy is based on a cross layer approach involving TDMA and AWCP.

Name of the Researcher:  Mohamed Hadded

Name of the Supervisor(s):  Yacine Ghamri Doudane

Year of Completion:  2016

University:  University Of Docteur

Thesis Link:   Home Page Url