List of Topics:
Location Research Breakthrough Possible @S-Logix pro@slogix.in

Office Address

Social List

What is AWS EMR? (Amazon Elastic MapReduce)

AWS CloudWatch

Condition for AWS CloudWatch

  •  Amazon EMR (Elastic MapReduce) is a managed big data processing platform on AWS.
     It allows you to run big data frameworks like:
     Apache Hadoop
     Apache Spark
     HBase
     Hive
     Presto
     Flink
     Hue
     Trino
     EMR lets you process, analyze, and transform large amounts of data using distributed computing on clusters.
     Think of EMR as:
     “A fast, managed, scalable Hadoop/Spark cluster provided by AWS.”

Why Use AWS EMR?

  •  Process large-scale data (Big Data)
     Datasets from:
     Logs
     IoT devices
     Social media
     Business analytics
     EMR processes TBs → PBs of data fast
  •  Run Hadoop / Spark without managing servers
     No need to install & configure:
     Hadoop NameNode
     DataNodes
     Spark cluster
     Hive Metastore
  •  Cost-efficient big data processing
     Run EMR on:
     EC2 instances
     Spot instances (very cheap)
     EMR Serverless (pay per job)
  •  Built-in AWS Integration
     S3 (Data lake)
     Athena
     Glue
     Redshift
     DynamoDB
     CloudWatch (logs)
  •  Auto scaling
     Adds nodes when workload increases
     Removes nodes when workload decreases
  •  Run complex analytics
     Streaming jobs (Spark Streaming)
     Machine learning (Spark MLlib)
     ETL workflows (Hive, Spark, Presto)

Advantages of AWS EMR

  •  Fully Managed Big Data Cluster
     No need to set up or manage:
     Hadoop cluster
     Spark cluster
     HBase master
     YARN Resource Manager
     AWS does it automatically
  •  Very Cost-Effective
     Supports EC2 Spot Instances → up to 80% cheaper
     Clusters can be stopped anytime
     EMR Serverless → pay only when jobs run
  •  Scalable Big Data Processing
     EMR scales automatically:
     Add more nodes for big data
     Remove nodes for small workloads
  •  High Performance
     EMR runs optimized versions of Hadoop/Spark:
     Faster than self-managed clusters
     Uses EMRFS (faster S3 connector)
  •  Integration with AWS Data Services
     Supports:
     S3 (primary data store)
     Glue (Data Catalog)
     Athena (SQL queries)
     DynamoDB
     Redshift
     CloudWatch logs
  •  Supports Multiple Big Data Frameworks
     You can run:
     Hadoop
     Spark
     HBase
     Hive
     Pig
     Presto
     Flink
     All on the same cluster.
  •  Flexible Cluster Types
     EMR on EC2
     EMR on EKS
     EMR Serverless

Disadvantages of AWS EMR

  •  Cluster Management Still Required
     Even though it’s managed, you still must handle:
     Node sizing
     Application configuration
     Performance monitoring
     Not fully hands-off
  •  Costs Can Increase
     If clusters run for long periods, cost increases—even if idle.
     Spot instances can terminate unexpectedly.
  •  Complex for Beginners
     Hadoop/Spark require experience in:
     Distributed computing
     ETL processing
     Cluster tuning
     EMR is easy to deploy but hard to master.
  •  High Learning Curve
     Need to know:
     HDFS and S3 interaction
     YARN
     Spark jobs
     Hive queries
     EMR bootstrap actions
  •  Performance Depends on Cluster Design
     If instance types are wrong (CPU/RAM mismatch), job slows down.
  •  Temporary HDFS Storage
     If cluster shuts down → HDFS data is lost (unless stored in S3).