Amazing technological breakthrough possible @S-Logix

Office Address

  • #5, First Floor, 4th Street Dr. Subbarayan Nagar Kodambakkam, Chennai-600 024 Landmark : Samiyar Madam
  • +91- 81240 01111

Social List

An efficient fuzziness based contiguous node refining scheme with cross-layer routing path in WSN - 2020

An efficient fuzziness based contiguous node refining scheme with cross-layer routing path in WSN

Research Area:  Wireless Sensor Networks


In the applications of Wireless Sensor Network, sensor nodes broadcast the data towards the destination. Localization is considered as the most important and interesting area in WSN as identifying the location of sensor nodes is needful for many situations. The proposed work, points on discovering the sensor node location and promotes cross layer effective routing path searching for the reliable data transmission in the network. The proposed work consists of three main phases. The initial phase includes the cross-layer link establishment. The second phase includes, identifying the fuzziness of wireless sensors. It tracks the location of sensor nodes and analyzes the behaviour. This can be done with the algorithm namely; Fuzziness based Contiguous nodes Refining Algorithm. Since the characteristics of nodes may vary often, the algorithm finds the unsuitable communication node in the routing path and removes it. Source node controls the activities of the intermediate nodes in the routing path. After identifying and removing the unsuitable nodes, in final phase, an effective routing path is established by using the scheme called Efficient Fuzziness based Contiguous node refining with cross-layer routing Scheme (EFCRS) is proposed. This selects the routing nodes from starting node to ending node with the lesser energy usage. At last, destination node acquires the enhanced throughput and reduced consumption of energy. It also obtains minimum packet latency. Simulation is carried out and found it, achieves better performance than existing algorithms in comparing metrics end to end delay, overhead, connectivity ratio, throughput and energy consumption.


Author(s) Name:  R. Elavarasan & K. Chitra

Journal name:   Peer-to-Peer Networking and Applications

Conferrence name:  

Publisher name:  Springer

DOI:  10.1007/s12083-019-00825-0

Volume Information:  volume 13, pages 2099–2111 (2020)