Research Area:  Mobile Ad Hoc Networks
In the routing discovery phase of the Mobile Ad hoc Networks (MANETs), the source node tries to find a fast and secure path to transmit data. However, the adversaries attempt to get the rights of routing during this phase ,then the networks can easily be paralyzed during the data transmission phase. During the routing discovery phase, finding a good path is already a challenge and verifying the security of the established path without revealing any privacy of the nodes adds a new dimension to the problem. In this paper, we present SRDPV, an approach that helps the source find the benign destination dynamically and conducts privacy-preserving verification of the path. Our approach first finds the benign destination. Then, it spreads the verification tasks across multiple nodes and verifies the log entries without revealing private data of the nodes. Unlike the traditional debugging system to detect the faults or misbehaviors of the nodes after the attacks, SRDPV can guarantee the source to avoid transmitting data through malicious nodes at the beginning and perform the verification without introducing a third party. We demonstrate the effectiveness of the approach by applying SRDPV in two scenarios: resisting the collaborative black-hole attack of the AODV protocol and detecting injected malicious intermediated routers which commit active and passive attacks in MANETs. We compared our approach with the existing secure routing algorithms and the results show that our approach can detect the malicious nodes, and the overhead of SRDPV is moderate.
Keywords:  
Author(s) Name:  Teng Li, JianFeng Ma and Cong Sun
Journal name:  Wireless Networks
Conferrence name:  
Publisher name:  Springer
DOI:  10.1007/s11276-017-1625-8
Volume Information:  volume 25,2019
Paper Link:   https://link.springer.com/article/10.1007/s11276-017-1625-8