Amazing technological breakthrough possible @S-Logix pro@slogix.in

Office Address

  • #5, First Floor, 4th Street Dr. Subbarayan Nagar Kodambakkam, Chennai-600 024 Landmark : Samiyar Madam
  • pro@slogix.in
  • +91- 81240 01111

Social List

Machine Learning-Based Cooperative Spectrum Sensing in Dynamic Segmentation Enabled Cognitive Radio Vehicular Network - 2021

Machine Learning-Based Cooperative Spectrum Sensing in Dynamic Segmentation Enabled Cognitive Radio Vehicular Network

Research Area:  Vehicular Ad Hoc Networks

Abstract:

A vehicle ad hoc network (VANET) is a solution for road safety, congestion management, and infotainment services. Integration of cognitive radio (CR), known as CR-VANET, is needed to solve the spectrum scarcity problems of VANET. Several research efforts have addressed the concerns of CR-VANET. However, more reliable, robust, and faster spectrum sensing is still a challenge. A novel segment-based CR-VANET (Seg-CR-VANET) architecture is therefore proposed in this paper. Roads are divided equally into segments, and they are sub-segmented based on the probability value. Individual vehicles or secondary users produce local sensing results by choosing an optimal spectrum sensing (SS) technique using a hybrid machine learning algorithm that includes fuzzy and naïve Bayes algorithms. We used dynamic threshold values for the sensing techniques. In this proposed cooperative SS, the segment spectrum agent (SSA) made the global decision using the tri-agent reinforcement learning (TA-RL) algorithm. Three environments (network, signal, and vehicle) are learned by this proposed algorithm to determine primary (licensed) users’ activities. The simulation results indicate that, compared to current works, the proposed Seg-CR-VANET produces better results in spectrum sensing.

Keywords:  

Author(s) Name:  Mohammad Asif Hossain , Rafidah Md Noor, Kok-Lim Alvin Yau , Saaidal Razalli Azzuhri, Muhammad Reza Zaba , Ismail Ahmedy and Mohammad Reza Jabbarpour

Journal name:  Energies

Conferrence name:  

Publisher name:  MDPI

DOI:  10.3390/en14041169

Volume Information:  2021, Volume 14, Issue (4), 1169