Amazing technological breakthrough possible @S-Logix pro@slogix.in

Office Address

  • #5, First Floor, 4th Street Dr. Subbarayan Nagar Kodambakkam, Chennai-600 024 Landmark : Samiyar Madam
  • pro@slogix.in
  • +91- 81240 01111

Social List

Time Barrier-Based Emergency Message Dissemination in Vehicular Ad-hoc Networks - 2019

Time Barrier-Based Emergency Message Dissemination in Vehicular Ad-hoc Networks

Research Area:  Vehicular Ad Hoc Networks

Abstract:

With the advancement in technology and inception of smart vehicles and smart cities, every vehicle can communicate with the other vehicles either directly or through ad-hoc networks. Therefore, such platforms can be utilized to disseminate time-critical information. However, in an ad-hoc situation, information coverage can be restricted in situations, where no relay vehicle is available. Moreover, the critical information must be delivered within a specific period of time; therefore, timely message dissemination is extremely important. The existing data dissemination techniques in VANETs generate a large number of messages through techniques such as broadcast or partial broadcast. Thus, the techniques based on broadcast schemes can cause congestion as all the recipients re-broadcast the message and vehicles receive multiple copies of same messages. Further, re-broadcast can degrade the coverage delivery ratio due to channel congestion. Moreover, the traditional cluster-based approach cannot work efficiently. As clustering schemes add additional delays due to communication with cluster head only. In this paper, we propose a data dissemination technique using a time barrier mechanism to reduce the overhead of messages that can clutter the network. The proposed solution is based on the concept of a super-node to timely disseminate the messages. Moreover, to avoid unnecessary broadcast which can also cause the broadcast storm problem, the time barrier technique is adapted to handle this problem. Thus, only the farthest vehicle rebroadcasts the message which can cover more distance. Therefore, the message can reach the farthest node in less time and thus, improves the coverage and reduces the delay. The proposed scheme is compared with traditional probabilistic approaches. The evaluation section shows the reduction in message overhead, transmission delay, improved coverage, and packet delivery ratio.

Keywords:  

Author(s) Name:  Syed Sarmad Shah; Asad Waqar Malik; Anis U. Rahman; Sohail Iqbal; Samee U. Khan

Journal name:  IEEE Access

Conferrence name:  

Publisher name:  IEEE

DOI:  10.1109/ACCESS.2019.2895114

Volume Information:  ( Volume: 7) Page(s): 16494 - 16503