List of Topics:
Location Research Breakthrough Possible @S-Logix pro@slogix.in

Office Address

Social List

How to Place the Application Only Cloud in IFogsim?

Place the Application Only Cloud in IFogsim

Condition for Place the Application Only Cloud in IFogsim

  • Description:
    In iFogSim, placing an application solely in the cloud involves configuring the cloud as the primary resource for executing the tasks of the application, while the fog nodes are either not utilized or remain idle. This can be done by defining the cloud as the exclusive computing resource in the application’s workflow configuration, assigning tasks to cloud data centers instead of fog nodes.
    The cloud data center must be appropriately set up within the simulation environment, ensuring that the resource allocation and scheduling parameters align with cloud-based task execution. Fog nodes, in this scenario, may not be involved in the scheduling of tasks or the processing load, effectively limiting the execution of the application to cloud infrastructure. Moreover, the network and latency factors should be considered to optimize the performance of the application when it operates solely in the cloud, especially for tasks that require high computational power and are less sensitive to the latency compared to edge or fog computing solutions.
Sample Code
  • package fogsamples;
    package fogsamples;
    import java.util.ArrayList;
    import java.util.Calendar;
    import java.util.LinkedList;
    import java.util.List;
    import org.cloudbus.cloudsim.Host;
    import org.cloudbus.cloudsim.Log;
    import org.cloudbus.cloudsim.Pe;
    import org.cloudbus.cloudsim.Storage;
    import org.cloudbus.cloudsim.core.CloudSim;
    import org.cloudbus.cloudsim.core.SimEvent;
    import org.cloudbus.cloudsim.power.PowerHost;
    import org.cloudbus.cloudsim.provisioners.RamProvisionerSimple;
    import org.cloudbus.cloudsim.sdn.overbooking.BwProvisionerOverbooking;
    import org.cloudbus.cloudsim.sdn.overbooking.PeProvisionerOverbooking;
    import org.fog.application.AppEdge;
    import org.fog.application.AppLoop;
    import org.fog.application.Application;
    import org.fog.application.selectivity.FractionalSelectivity;
    import org.fog.entities.Actuator;
    import org.fog.entities.FogBroker;
    import org.fog.entities.FogDevice;
    import org.fog.entities.FogDeviceCharacteristics;
    import org.fog.entities.Sensor;
    import org.fog.entities.Tuple;
    import org.fog.placement.Controller;
    import org.fog.placement.ModuleMapping;
    import org.fog.placement.ModulePlacementEdgewards;
    import org.fog.placement.ModulePlacementMapping;
    import org.fog.policy.AppModuleAllocationPolicy;
    import org.fog.scheduler.StreamOperatorScheduler;
    import org.fog.utils.FogLinearPowerModel;
    import org.fog.utils.FogUtils;
    import org.fog.utils.TimeKeeper;
    import org.fog.utils.distribution.DeterministicDistribution;
    public class PlaceApplicationOnlyCloud {
    static List fogDevices = new ArrayList();
    static List sensors = new ArrayList();
    static List actuators = new ArrayList();
    static int numOfAreas = 1;
    static int numOfCamerasPerArea = 4;
    private static boolean CLOUD = true;
    public static void main(String[] args) {
    Log.printLine("Starting place application only cloud...");
    try {
    Log.disable();
    int num_user = 1; // number of cloud users
    Calendar calendar = Calendar.getInstance();
    boolean trace_flag = false; // mean trace events
    CloudSim.init(num_user, calendar, trace_flag);
    String appId = "dcns"; // identifier of the application
    FogBroker broker = new FogBroker("broker");
    Application application = createApplication(appId, broker.getId());
    application.setUserId(broker.getId());
    createFogDevices(broker.getId(), appId);
    Controller controller = null;
    ModuleMapping moduleMapping = ModuleMapping.createModuleMapping(); // initializing
    a module mapping
    for (FogDevice device : fogDevices) {
    if (device.getName().startsWith("m")) { // names of all Smart Cameras start with 'm'
    moduleMapping.addModuleToDevice("motion_detector", device.getName()); // fixing
    1 instance of the Motion Detector module to each Smart Camera
    }
    }
    moduleMapping.addModuleToDevice("user_interface", "cloud"); // fixing instances of User
    Interface module in the Cloud
    if (CLOUD) {
    // if the mode of deployment is cloud-based
    moduleMapping.addModuleToDevice("object_detector", "cloud"); // placing all instances
    of Object Detector module in the Cloud
    moduleMapping.addModuleToDevice("object_tracker", "cloud"); // placing all instances
    of Object Tracker module in the Cloud
    }
    controller = new Controller("master-controller", fogDevices, sensors,
    actuators);
    controller.submitApplication(application,
    (CLOUD) ? (new ModulePlacementMapping(fogDevices, application,
    moduleMapping))
    : (new ModulePlacementEdgewards(fogDevices, sensors, actuators, application,
    moduleMapping)));
    TimeKeeper.getInstance().setSimulationStartTime(Calendar.getInstance().getTimeInMillis());
    CloudSim.startSimulation();
    CloudSim.stopSimulation();
    Log.printLine("VRGame finished!");
    } catch (Exception e) {
    e.printStackTrace();
    Log.printLine("Unwanted errors happen");
    }
    }
    protected void processTupleArrival(SimEvent ev) {
    // You can add more conditions and custom processing for different tuple types here.
    }
    /**
    * Creates the fog devices in the physical topology of the simulation.
    *
    * @param userId
    * @param appId
    */
    private static void createFogDevices(int userId, String appId) {
    FogDevice cloud = createFogDevice("cloud", 44800, 40000, 100, 10000, 0, 0.01, 16 * 103, 16
    * 83.25);
    cloud.setParentId(-1);
    fogDevices.add(cloud);
    FogDevice proxy = createFogDevice("proxy-server", 2800, 4000, 10000, 10000, 1, 0.0,
    107.339, 83.4333);
    proxy.setParentId(cloud.getId());
    proxy.setUplinkLatency(100); // latency of connection between proxy server and cloud is 100
    ms
    fogDevices.add(proxy);
    for (int i = 0; i < numOfAreas; i++) {
    addArea(i + "", userId, appId, proxy.getId());
    }
    }
    private static FogDevice addArea(String id, int userId, String appId, int parentId) {
    FogDevice router = createFogDevice("d-" + id, 2800, 4000, 10000, 10000, 1, 0.0, 107.339,
    83.4333);
    fogDevices.add(router);
    router.setUplinkLatency(2); // latency of connection between router and proxy server is 2 ms
    for (int i = 0; i < numOfCamerasPerArea; i++) {
    String mobileId = id + "-" + i;
    FogDevice camera = addCamera(mobileId, userId, appId, router.getId()); // adding a smart
    camera to the physical topology. Smart cameras have been modeled as fog devices as well.
    camera.setUplinkLatency(2); // latency of connection between camera and router is 2 ms
    fogDevices.add(camera);
    }
    router.setParentId(parentId);
    return router;
    }
    private static FogDevice addCamera(String id, int userId, String appId, int parentId) {
    FogDevice camera = createFogDevice("m-" + id, 500, 1000, 10000, 10000, 3, 0, 87.53, 82.44);
    camera.setParentId(parentId);
    Sensor sensor = new Sensor("s-" + id, "CAMERA", userId, appId, new
    DeterministicDistribution(5)); // inter-transmission time of camera (sensor) follows a deterministic
    distribution
    sensors.add(sensor);
    Actuator ptz = new Actuator("ptz-" + id, userId, appId, "PTZ_CONTROL");
    actuators.add(ptz);
    sensor.setGatewayDeviceId(camera.getId());
    sensor.setLatency(1.0); // latency of connection between camera (sensor) and the parent Smart
    Camera is 1 ms
    ptz.setGatewayDeviceId(camera.getId());
    ptz.setLatency(1.0); // latency of connection between PTZ Control and the parent Smart
    Camera is 1 ms
    return camera;
    }
    /**
    * Creates a vanilla fog device
    *
    * @param nodeName name of the device to be used in simulation
    * @param mips MIPS
    * @param ram RAM
    * @param upBw uplink bandwidth
    * @param downBw downlink bandwidth
    * @param level hierarchy level of the device
    * @param ratePerMips cost rate per MIPS used
    * @param busyPower
    * @param idlePower
    * @return
    */
    private static FogDevice createFogDevice(String nodeName, long mips,
    int ram, long upBw, long downBw, int level, double ratePerMips, double busyPower, double
    idlePower) {
    List peList = new ArrayList();
    // 3. Create PEs and add these into a list.
    peList.add(new Pe(0, new PeProvisionerOverbooking(mips))); // need to store Pe id and MIPS
    Rating
    int hostId = FogUtils.generateEntityId();
    long storage = 1000000; // host storage
    int bw = 10000;
    PowerHost host = new PowerHost(
    hostId,
    new RamProvisionerSimple(ram),
    new BwProvisionerOverbooking(bw),
    storage,
    peList,
    new StreamOperatorScheduler(peList),
    new FogLinearPowerModel(busyPower, idlePower)
    );
    List hostList = new ArrayList();
    hostList.add(host);
    String arch = "x86"; // system architecture
    String os = "Linux"; // operating system
    String vmm = "Xen";
    double time_zone = 10.0; // time zone this resource located
    double cost = 3.0; // the cost of using processing in this resource
    double costPerMem = 0.05; // the cost of using memory in this resource
    double costPerStorage = 0.001; // the cost of using storage in this
    // resource
    double costPerBw = 0.0; // the cost of using bw in this resource
    LinkedList storageList = new LinkedList(); // we are not adding SAN
    // devices by now
    FogDeviceCharacteristics characteristics = new FogDeviceCharacteristics(
    arch, os, vmm, host, time_zone, cost, costPerMem,
    costPerStorage, costPerBw);
    FogDevice fogdevice = null;
    try {
    fogdevice = new FogDevice(nodeName, characteristics,
    new AppModuleAllocationPolicy(hostList), storageList, 10, upBw, downBw, 0,
    ratePerMips);
    } catch (Exception e) {
    e.printStackTrace();
    }
    fogdevice.setLevel(level);
    return fogdevice;
    }
    /**
    * Function to create the Intelligent Surveillance application in the DDF
    * model.
    * * @param appId unique identifier of the application
    * @param userId identifier of the user of the application
    * @return
    */
    @SuppressWarnings({"serial"})
    private static Application createApplication(String appId, int userId) {
    Application application = Application.createApplication(appId, userId);
    /*
    * Adding modules (vertices) to the application model (directed graph)
    */ application.addAppModule("object_detector", 10);
    application.addAppModule("motion_detector", 10);
    application.addAppModule("object_tracker", 10);
    application.addAppModule("user_interface", 10);
    /* * Connecting the application modules (vertices) in the application model (directed
    graph) with edges
    */ application.addAppEdge("CAMERA", "motion_detector", 1000, 20000, "CAMERA",
    Tuple.UP, AppEdge.SENSOR); // adding edge from CAMERA (sensor) to Motion Detector module
    carrying tuples of type CAMERA
    application.addAppEdge("motion_detector", "object_detector", 2000, 2000,
    "MOTION_VIDEO_STREAM", Tuple.UP, AppEdge.MODULE); // adding edge from Motion
    Detector to Object Detector module carrying tuples of type MOTION_VIDEO_STREAM
    application.addAppEdge("object_detector", "user_interface", 500, 2000,
    "DETECTED_OBJECT", Tuple.UP, AppEdge.MODULE); // adding edge from Object Detector to
    User Interface module carrying tuples of type DETECTED_OBJECT
    application.addAppEdge("object_detector", "object_tracker", 1000, 100,
    "OBJECT_LOCATION", Tuple.UP, AppEdge.MODULE); // adding edge from Object Detector to
    Object Tracker module carrying tuples of type OBJECT_LOCATION
    application.addAppEdge("object_tracker", "PTZ_CONTROL", 100, 28, 100,
    "PTZ_PARAMS", Tuple.DOWN, AppEdge.ACTUATOR); // adding edge from Object Tracker to
    PTZ CONTROL (actuator) carrying tuples of type PTZ_PARAMS
    /*
    * Defining the input-output relationships (represented by selectivity) of the
    application modules.
    */
    application.addTupleMapping("motion_detector", "CAMERA",
    "MOTION_VIDEO_STREAM", new FractionalSelectivity(1.0)); // 1.0 tuples of type
    MOTION_VIDEO_STREAM are emitted by Motion Detector module per incoming tuple of type
    CAMERA
    application.addTupleMapping("object_detector", "MOTION_VIDEO_STREAM",
    "OBJECT_LOCATION", new FractionalSelectivity(1.0)); // 1.0 tuples of type
    OBJECT_LOCATION are emitted by Object Detector module per incoming tuple of type
    MOTION_VIDEO_STREAM
    application.addTupleMapping("object_detector", "MOTION_VIDEO_STREAM",
    "DETECTED_OBJECT", new FractionalSelectivity(0.05)); // 0.05 tuples of type
    MOTION_VIDEO_STREAM are emitted by Object Detector module per incoming tuple of type
    MOTION_VIDEO_STREAM
    /*
    * Defining application loops (maybe incomplete loops) to monitor the latency of.
    * Here, we add two loops for monitoring : Motion Detector -> Object Detector ->
    Object Tracker and Object Tracker -> PTZ Control
    */
    final AppLoop loop1 = new AppLoop(new ArrayList() {
    {
    add("motion_detector");
    add("object_detector");
    add("object_tracker");
    }
    });
    final AppLoop loop2 = new AppLoop(new ArrayList() {
    {
    add("object_tracker");
    add("PTZ_CONTROL");
    }
    });
    List loops = new ArrayList() {
    {
    add(loop1);
    add(loop2);
    }
    };
    application.setLoops(loops);
    return application;
    }
    }
ScreenShots
  • place Application Only Cloud