Research Area:  Machine Learning
Imbalance data classification is a challenging task in automatic seizure detection from electroencephalogram (EEG) recordings when the durations of non-seizure periods are much longer than those of seizure activities. An imbalanced learning model is proposed in this paper to improve the identification of seizure events in long-term EEG signals. To better represent the underlying microstructure distributions of EEG signals while preserving the non-stationary nature, discrete wavelet transform (DWT) and uniform 1D-LBP feature extraction procedure are introduced. A learning framework is then designed by the ensemble of weakly trained support vector machines (SVMs). Under-sampling is employed to split the imbalanced seizure and non-seizure samples into multiple balanced subsets where each of them is utilized to train an individual SVM classifier. The weak SVMs are incorporated to build a strong classifier which emphasizes seizure samples and in the meantime analyzing the imbalanced class distribution of EEG data. Final seizure detection results are obtained in a multi-level decision fusion process by considering temporal and frequency factors. The model was validated over two long-term and one short-term public EEG databases. The model achieved a 𝐺-mean of 97.14% with respect to epoch-level assessment, an event-level sensitivity of 96.67%, and a false detection rate of 0.86/h on the long-term intracranial database. An epoch-level 𝐺-mean of 95.28% and event-level false detection rate of 0.81/h were yielded over the long-term scalp database. The comparisons with 14 published methods demonstrated the improved detection performance for imbalanced EEG signals and the generalizability of the proposed model.
Keywords:  
Author(s) Name:  Chengfa Sun, Hui Cui, Weidong Zhou, Weiwei Nie, Xiuying Wang and Qi Yuan
Journal name:  International Journal of Neural Systems
Conferrence name:  
Publisher name:  World Scientific
DOI:  10.1142/S0129065719500217
Volume Information:  Vol. 29, No. 10, 1950021 (2019)
Paper Link:   https://www.worldscientific.com/doi/abs/10.1142/S0129065719500217